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11 . CONNECTING TESTS

In this chapter we describe the basic strategies for connecting tests intended to measure on the
same variable so that the separate measures each test implies are expressed together on one single
common scale. The process begins by understanding how to link two tests . Next we consider how to
connect several tests and from there we proceed to plans for connecting all possible tests .

The traditional method for connecting two tests is by equating the equal-percentile scores of a
sample of persons who take both tests simultaneously . This process requires a large sample of persons
with scores broadlyenough distributed to assure an adequate representation of each score-to-percentile
connection .

Rasch measurement enables a more economical and better controlled method for connecting
tests andbuilding item banks. Links of 10 to 20 common items are embedded in pairs of tests composed
of otherwise different items . Each test is administered to its own sample of persons. No person need
take more than one test . But all items in all tests can be subsequently connectedthroughthe network of
common item links.

The traditional approach to equating two 60-item tests, say Test A and Test B, is to give both
tests simultaneously to a sample of many, say 1200, persons as in Figure 11 .1 . The large sample is to
assure the detailed representation of score percentiles necessary for successful percentile equating .
Each person takes Test A and Test B, a total of 120 items.

In contrast, the Rasch approach can do the same job with each person taking only one test of 60
items. To accomplish this a third 60-item test, C, is made up of 30 items from each of the original testsA
andB . Then each of these three tests is given to a sample of 400persons as depicted in the lower half of
Figure 11 .1 . Now each person takes only one test, but all 120 items are calibrated together through the
two 30-item links connecting the three tests. The testing burden on each person is one half of that
required by the equal percentile plan. But the equating of the tests is under far better control. In actual
practice, the three samples can also be halved to 200 each without loss of control. This reduces the
amount of data to one fourth of that required for the equal percentile equating .

In Rasch equating, the separate calibrations of each test produce a pair of independent item
difficulties for each linking item . The equating modelasserts that each pair of estimates are statistically
equivalent except for a single constant of translationcommon to all pairs in the link .

If two tests, A and B, are joined by a common link ofK items and each test is given to its own
sample ofN persons, then dA and drB can represent the estimated difficulties of item i in each test with
standard errors of approximately 2.5/N'2 and the single constant necessary to translate all item
difficulties in the calibration of Test B onto the scale of Test A is

x
GAB =

	

(diA - diB) I K
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Figure 11.1

Traditional and Rasch equating designs.
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with standard error of approximately 3.5/(NK)'I logits .

In contrast to traditional equating, in whichno quality control is available, the quality of this
Rasch link can be evaluated by the fit statistic :

K

(d,, - di, - G")2(N/ 12)[K/ (K-1)] - XK
a

which, when the two tests do fit together, will be distributed approximately chi-square with K
degrees of freedom.

In addition, the individual fit of each item link can be evaluated by

(d;A - di, -GAB) 2(N/ 12)[K/ (K-1)] - X

which, when the performance of that item is consistent with the equating, will be approximately
chi-square with one degree of freedom.

These simple fit statistics enable detailed, item by item control and remediation of test
equations.

When using these chi-square statistics to judge link quality we keep in mind how they are
affected by sample size . When N exceeds 500 these chi-squares can detect link flaws too small to
make any noteworthy difference in GAB , too small to matter. (When calibration samples are large,
the root mean square misfit is more useful . This statistic can be used to estimate the logit increase
in calibration error caused by link flaw.)

In deciding how to act on evaluations of link fit, we also keep in mind that random uncer-
tainty in item difficulty of less than .3 logits has no discernible bearing on person measurement
(Wright & Douglas, 1975, 35-39) .

Because of the way sample size enters into the calculation of item difficultly and hence into
the evaluation of link quality, we can deduce from these considerations that samples as small as
200 persons and links of as few as 10 good items will always be more than enough to supervise link
validity at better than .3 logits . In practice we have found that we can construct useful and stable
item banks with sample units as small as 50 persons.

THECOMMON LINK

The basic structure required to calibrate many items onto a single variable is the common
item link in which one set of linking test items is shared by and so connects together two otherwise
different tests. An easy and ahard test can be linked by a common set of intermediate items . These
linking items are the "hard" items in the easy test butthe "easy" items in the hard test (Figure 11 .2) .

With two or more test links we can build a chain of the kind shown in Figure 11 .3 .

The representation in Figure 11 .3 can be conveyed equally well by the simpler scheme
shown in Figure 11 .4 which emphasizes the links and facilitates diagraming more complicated
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linking structures . Each circle indicates a test sufficiently narrow in range of item difficulties to be
manageable by a suitably chosen sample of persons .

Figure 11.4

A chain with two links (simplified) .

Each line connecting a circle represents a link of common items shared by the two tests it
joins . Tests increase in difficulty horizontally along the variable and are comparable in difficulty
vertically.

Links can be constructed to form a loop as shown in Figure 11 .5 .

Figure 11 .5

A loop of three links.



The loop is an important linking structure because it yields an additional verification of link
coherence . If the three links in a loop are consistent, then the sum of their three link translations
should estimate zero .

in which

(GAB +GBC +GCA) - 0

where GAB means the shift from Test A to Test B as we go around the loop so that GCA means the shift
from Test C back to Test A.

Estimating zero statistically means that the sum of these shifts should come to within a few
standard errors of zero . The standard error of the sum (GAB+GBC+GcA ) is :

35(1/NABKAB +1/NBCKBC +1/NCAKCA
)1/2

N = the various calibration sample sizes and

K= the various numbers of items in each link .

With four or more tests we can construct networks of loops . Figure 11 .6 shows ten tests
marking out several levels of difficulty from Tests A through D. This network could connect ten
60-item tests by means of nineteen 10-item links to construct a bank of 600-190=410 commonly
calibrated items . If 100 persons took each test, then 410 items could be evaluated for possible
calibration together from the responses of only 1,000 persons . Even persons at 50 per test would
provide a substantial purchase on the possibilities for building an item bank out of the best of the
410 items .

Figure 11 .6

A network connecting ten tests with nineteen links .
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The building blocks of a test network are the loops of three tests each . When a loop fits the
Rasch model, then its three translations will sum to within a few standard errors of zero . The
success of the network at linking item calibrations can be evaluated from the magnitudes and direc
tions of these loop sums. Shaky regions can be identified and steps taken to avoid or improve them.

The implementation of test networks leads to banks of commonly calibrated items far larger
in number and far more dispersed in difficulty than any single person could ever handle. The
resulting item banks, because of the calibration of their items onto one common variable, provide
the item resources for a prolific family of useful tests, long or short, easy or hard, widely spaced in
item difficulty or narrowly focused, all equated in the measures they imply.

BANKING EXISTING TESTS AND ITEMS

These methods for building item banks can be applied to existing tests and items, if they
have been carefully constructed . Suppose we have two non-overlapping, sequential series of tests
Al, A2, A3, A4 and B1, B2, B3, B4 which we want to equate . All eight tests can be equated by
connecting them with a new series of intermediate tests X, Y and Z made up entirely from items
common to both series as shown in Figure 11 .7 .

Figure 11.7

Connecting two non-overlapping test series by intermediate linking tests .



Were the A and B series of tests in Figure 11 .7 still in the planning stage, they could also be
linked directly by embedding common items in each test according to the pattern shown in Figure
11 .8 .

Figure 11 .8

Connecting two test series by embedding common links.

Networks maximize the number of links among test forms because each form is linked to as
many other forms as possible. To illustrate, take a small banking problem where we use 10 items
per form in a web in which each one of these 10 items also appears in one of 10 other different
forms . The complete set of 10+1=11 forms constitutes a web woven out of 11 x 10/2=55 individual
linking items . Every one of the 11 forms is connected to every otherform . The pattern is pictured
in Figure 11 .9 .

The number entered in each cell is the identification of the item linking the two forms which
define the position of that cell .

In this design, the web is complete because every form is connected to every other form. In
the use of webs to build banks, however, there are three constraints which affect their construction :

1)

	

the total number of items we want to calibrate into the bank,

2)

	

themaximum number of items which we can combine into asingle form and

3)

	

theextent to which the bank we have in mind reaches out in difficulty beyond the
capacity of any one person .



The testing situation and the capacity of the persons taking the test forms limit the number of
items we can put into a single form. Usually, however, we want to calibrate many more items that
we can embed in a complete web like the one illustrated in Figure 11 .9 . There are two possibilities
for including more items.
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Figure 11.9

A complete web for parallelforms.
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The simplest, but not the best, is to design a "nuclear" complete web which uses up some
portion of the items we can include in a single form. Then we fill outthe required form length with
additional "tag" items. These tag items are calibrated into the bank by means of the link items in
their form. Unlike the link items, however, which always appear in two forms, the tag items appear
in only one form and so give no help with linking forms together into one commonly calibrated
blank .

Another possibility, which is better statistically, is to increase the number of forms used
while keeping the items per form fixed at the required limit. This makes the web incomplete but in
a systematic way. The paired data on every item appearing twice can be used to evaluate the
coherence of bank calibrations . Figure 11 .10 shows an "incomplete" web for a 21 form design with
10 items per form, as in Figure 11 .9, but connecting nearly twice as many items.
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An incomplete web for parallel forms.
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Formulation :
N = MLI2

Where:
N= number of items
M = number of forms

i .e ., 2 NIL
L =

	

number of items
(or links) per form
must be even

The incomplete web in Figure 11 .10 is suitable for linking a set of parallel test forms . When
the reach of the bank goes beyond the capacity of any one person, however, neither of the webs in
Figures 11 .9 and 11 .10 will suffice, because we will be unable to combine items from the easy and
hard ends of the bank into the same forms. The triangle of linking items in the upper right corners of
Figures 9 and 10 will not be functional and will have to be deleted . In order to maintain the balance
of linking along the variable we will have to do something at each end of the web to fill out the
easiest and hardest forms so that the extremes are as tightly linked as the center.

Figure 11 .11 shows how this can be done systematically for a set of 21 sequential forms .
We still have 10 items per form, but now only adjacent forms are linked together. There are no
common items connecting the easiest forms directly with the hardest forms . But over the range of
the variable the forms near to one another in difficulty level are woven together with the maximum
number of links .



An incomplete web for sequentialforms.
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Formulation :
N = MU2 + K

Where:
N= number of items

(or links) in the bank
M= number of forms

i .e ., 2 (N-K)IL
L =

	

number of items
(or links) per form
must be even

K= L/4, if U2 is even
K= (L + 2)/4, if U2 is odd
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Each linking item in the webs shown in Figures 11 .8, 11 .9, 11 .10, and 11 .11 could in fact
refer to a cluster of two or more items which appear together in each of the two forms they link .
Sometimes the design or printing format of items forces them into clusters . This happens in reading
comprehension tests where clusters of items are attached to reading passages . It also occurs on
math and information retrieval tests where clusters of items refer to common exhibits . Clustering
increases the item length of each form by a factor equal to the cluster size .

The statistical analysis of a bank-building web is simple if the web is complete as in Figure
11 .9 . The row means of the corresponding matrix of form links are least square estimates of the
form difficulties . We need only be careful about signs . If the web cell entry GJk . estimates the
difference in difficulty (S ; - Sk ) between forms j and k and the form difficulties are centered at zero
so that S. = 0, then

M

= 1:GIk/M = Sj
K
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the row means of the link matrix calibrate the forms onto their common variable . Once form
difficulties are obtained, they need only be added to the item difficulties within forms to bring all
items onto the common variable shared by the forms.

The incomplete webs in Figures 11 .10 and 11 .11 require us to estimate row means from a
matrix with missing data . The skew symmetry of link matrices helps the solution to this problem
which can be done satisfactorily by iteration or regression .

When cells of the link matrix of Gjk , are missing, then initial values for Gj . can be obtained

from Equation [6] by using zero's for the missing G;k . .

The next step is to replace the missing Gjk . with estimates from the corresponding Gj . and

Gk . using G;k = Gj . - Gk . and recalculating Gj. by Equation [6].

Iterations of this process will converge to stable values for the test form difficulties G;. .

An even simpler but less informative solution is to express the data for all forms in one
large matrix in which every item has its own column, every person has their own row and every
intersection, at which a person does not address an item, is recorded as blank. This matrix, with its
missing data, can be analyzed directly in one step with BIGSTEPS (Wright & Linacre, 1996).
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