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ABSTRACT 

Necessary and sufficient relations between measurement 

objectivity and psychometric models for data in more than two 

categories are reviewed and extended. Rasch (1960, 1961) and 

others prove the sufficiency  of Rasch models for objectivity. 

Douglas and Wright (1986) derive the model necessary  for 

objectivity for data in two categories. Rasch (1968) outlines a 

proof of the model necessary for observations in any number of 

categories but does not deal with the unidimensional rating scale 

model. This paper completes Rasch's proof, interprets the 

structural characteristics of his model and shows that it is the 

only rating scale model which produces the measurement 

objectivity necessary for scientific comparisons. 

Key words: item response theory, latent trait analysis, 

measurement, Rasch model, rating scale analysis 
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Introduction 

Rasch (1960, 1961, 1967, 1977) identifies the necessary 

structure of unidimensional models for two observational 

categories. Douglas and Wright (1986) review and extend the 

proofs of this structure and address the related issue of parame-

ter dimensionality. Our aim here is to derive the unidimensional 

model necessary for objectivity when observations are recorded in 

more than two categories. 

Rasch's (1968) analysis of the necessary model when data are 

observed in more than two categories is unpublished and incom-

plete. With the exception of Andersen's (1972, 1973) work on 

parameter estimation, this multidimensional model has been 

neglected. But a considerable amount has been published on uni-

dimensional Rasch models for rating scale data (Andrich 1978a, 

1978b, 1978c; Masters 1982; Wright and Masters 1982; Masters and 

Wright 1984). Andrich (1978a) derives a unidimensional Rasch 

model for rating scale data from Thurstone's concept of thres-

holds. We will prove the necessity of this model from the 

requirement of objectivity. 
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The first section of this paper reviews the concept of 

objectivity (Douglas and Wright 1986). The second section proves 

the necessity of the Rasch rating scale model, i.e., one dimen-

sion but more than two categories of observation. The third sec-

tion derives the necessary scoring function. The fourth section 

develops an interpretation of the category characteristics 

(Andrich 1978a). 

Objectivity  

Discussions of the essential part objectivity plays in 

scientific comparisons can be found in Rasch (1960, 1977) and 

Douglas and Wright (1986). A scientific comparison of objects 

with respect to a specific variable is a statement about the 

objects obtained from observations of their interactions with 

agents suitable to elicit manifestations of the variable in ques-

tion. In order for a comparison to be objective, i.e., more than 

locally descriptive, it is necessary that the statement comparing 

the objects be independent of which agents have been employed to 

produce the observed interactions. 

Interactions are realized through observational categories 

designed to define increasing levels of the intended variable. 

What we observe is the presence or absence of a particular event. 

This makes the observations qualitative. A model is needed to 

transform these qualitative observations into quantitative meas-

ures. When the model is probabilistic and unidimensional, the 

chances of an observation falling in a particular category must 
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be determined wholly and uniquely by a pair of unidimensional 

parameters: one a property of the object and the other a commen-

surable property of the agent. 

Since the probability of the observation is to be uniquely 

determined by the property common to object 0 and agent A , a 

general expression for a comparison of two objects 01 and 0 2 

with parameters al and a2 , based on a suitable agent A with 

parameter d is 

g[P(a 1' 0,1'02,6)] • 

Douglas and Wright (1986) show that when there are two categories 

the only probability function P (i.e., model) that can make the 

comparative statement g independent of 6 is 

P(a,a) = exp[fl(a)+f20)+*[1+expifi(a)+f20)+4 . 
(1) 

The crucial feature of this model is that the function of 

the object parameter flO) and the function of the agent param-

eter f
2 (6) 

enter the exponent additively. The familiar Rasch 

model for measurement based on two categories arises by replacing 

f (a) by 5 , f 2 (6) 
by - d , and setting C = 0 . An 

indispensable aspect of the derivation of this result is the sta-

tistical conditioning which makes comparisons objective by remov-

ing unwanted parameters. 
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Models for More than Two Categories  

A set of m + 1 categories sustains m pairs of object and 

agent parameters, each pair representing a different dimension 

(Douglas and Wright 1986). A unidimensional model for rating 

scale data must focus on one of these pairs. We will describe 

the participating elements as "objects" and "agents" to emphasize 

that the rating scale model is applicable to any situation in 

which the observation of the interaction between an object and an 

agent falls into one of a set of categories. The unidimensional 

framework means that there can be one (and only one) parameter 

per object , i.e., one a , and one (and only one) commensurable 

parameter per agent, i.e., one 6  . It also means that the 

categories can have one and only one order from "least " to 

"most." Indeed, establishing that order by assigning hierarchi-

cal labels to the categories is the basic step in operationaliz-

ing the intended variable. 

Our proof will show that a useful model exists with these 

characteristics and that it is the only model for such a frame-

work which has objectivity. Psychometric applications follow 

from suitable identification of objects, agents and categories. 

We will also show that a priori "scoring" of categories is not 

only superfluous but out of order, since one and only one way of 

counting observations results from the model's structure. 
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Rating Scale Model  

When observations are made in m + 1 ordered categories, we 

can write U:(XO ,X l ,..,Xm) to represent the set of available 

categories. Within this complete set of m + 1 possibilities we 

can represent partitions which isolate pairs of categories by 

V:(X0  ,X ) . 

A general model for a set of categories U is 

P(X E X j ) = P (3,6) 	j=0,1,..,m, 
(2) 

where 	(i) the notation XeX j  means that observation 

X falls in category Xi , 

(ii) the index j on P (am reminds us that 

the probability will depend on the category 

Xj  in which the observation fell, and 

(iii) objects and agents are each parameterized 

by a single scalar parameter to conform to 

the unidimensional framework. 

A unidimensional framework requires that a and 6 combine 

in p (am in one and only one way because more than one way of 

combining would produce more than one dimension. This means that 

5 and 6 must combine in a function 11 ( 3 , 6 ) which does not 

change from category to category, i.e., which is not a function 
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of j . This makes the model 

P(X 	Xj) = P [1103,0] 	j=0,1,..,m. 
(3) 

Our task is to derive the structure of P [1103,0] 	neces- 

sary for objectivity. When the framework is partitioned so that 

attention is focused on a subset V of two categories within 

U , a subset in which the observation X is recorded only if it 

belongs to one of the two categories within V , then the proba-

bility that the observation is in category Xj , given that it 

came from V , is 

P(X E XilV) = P(X E XjIU)  

P(VIU) 	 (4) 

A similar expression may be written for the probability that 

the observation is in category X° within V . When we take the 

ratio of these two probabilities, their denominators cancel leav-

ing 

P(X 	XjIV)  _ P(X 	XjIU) 	. 

P(X E X°IV) 	P(X e X°IU) 

(5) 

This is remarkable because it shows that the ratio of proba-

bilities of pairs of observations is the same regardless of the 

partition of the framework. Thus, if we know the structure of 
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the probabilities with respect to any pair in any V , we also 

know the structure of all pairs in U . 

Since the structure necessary for objectivity within V is 

known to be the additive exponential of equation (1) (Douglas and 

Wright 1986), the ratio of probabilities of the pair of 

categories X3  and X°  must also be an additive exponential of 

some scalar functions of the object parameter, say c i (s) and of 

the agent parameter, say ly
j 
 (0 . The ratio of probabilities 

in (5) must therefore be 

P(X e XjIU)  = exp [c
i 
 ( 6)+11)

i 
 (0] 

P(X e X°IU) 	 • 	 (6) 

Since neither unidimensional parameter 8 nor 6 may be indexed 

to categories, the functions c
j 
 and 1p are subscripted by j 
 j 

to identify the category they refer to. 

The remainder of the derivation of the rating scale model 

necessary for objectivity is accomplished by manipulations of 

these functions and differentiation. The crux of the derivation 

is that objectivity requires the unidimensional function which 

combines object and agent parameters 11(8,0 to be the same from 

one category to another. 
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We start by replacing P(Xa j ) with P
i 
 [11(6,0] 	in the 

ratio (6) and removing the exponential by taking logarithms, 

P[u0,6)] -  
log  - 	 = C (s)+11) 0) . 	 ( 7 ) 

P 0  [u0,6)] 	
i 	i 

- 

This 	exposes
i 
 and 	*

i 
 for 	analysis. 	Letting 

g
i  [
110,01 represent this ratio, we have 

g
i 
 [1.1( e, 6)] = c ( e)-Hp (6) . 

i 	i 	
(8) 

Our aim is to obtain an additive structure for object and agent 

parameters on both sides of this equation. This is done by 

reparameterizations based on the functional relationships among 

these parameters. 

The first step is to reparameterize category one by setting 

1 (6) equal to 	e and 	11) 1 (6) equal to n , 	so 	that 

gl[P(s ' 6)] = C 1 (6)-4 1 (6)  "1-n 	' 	 (9) 
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But now the parameters on the left are unlike those on the 

right. This disparity is remedied by inverting the function in 

(9) so that 

P(8,6) = g1 1 (8+n) = k 1 (8+n) . 
(10) 

When this expression for u 	is introduced into (8) for 

category X2  , we have 

g2[k i (e+n)] = C 2 (°)+* 2 (6)  (11) 

Once again we have a disparity in parameters on left and 

right. But both sets are additive. The disparity is removed as 

before. From (9) we write 

= C 1 (8) 	s (8) and 6 = * -1 (n) = t (n) 1 	
(12) 

so that 	c 2 (041, 2 ( 6 ) may be written 

2  [s 1 (e)] + 4, 2  [t 1 (n)] , 
(13) 

and the functions-of-a-function may be replaced by single func-

tions, say 

C 2  [S i (e)] = h 2 (e) and 4, 2  [t i (n)] = k 2 (n) 
(14) 
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so that (11) becomes 

g [k (e+n)] = h (8)+k (n) . 2 	1 	 2 	2 

(15) 

Now the parameters 	e and n are the same on both sides. 

The function g2 for category X2 is a function of ki . But 

k1 is a function of 0-1-n 	which is not associated with the 

second category. 	Finally g2 is equal to an additive combina- 

tion of functions h2 and k2 	of the same e 	and n , but 

indexed by j = 2 . 

Partial derivatives of the function (e+n) 	with respect 

to either 0 or n are equal to 1 . To take advantage of this 

we differentiate the function of a function of a function in (15) 

with respect to 0 and then separately with respect to n . Thus 

ag2 aki 	80+n) 	8h 2 (e) 
	 _ 

ak a(e+n) 	ae 	ae 
1 

and 

ag2 	akl  a(e+n) 	
ak 2 	(n) 

_ 	 . 
ak a(e+n) 	an 	an 

1 	 (16) 
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But the left sides of these expressions are equal because the 

first two differentiations in each expression are identical and 

the derivatives 

a(e+n) 	and 	a(e+n) 	equal 1 . 
ae 	 an 

This shows that the derivative of h 2 with respect to 

is identical to the derivative of k 2  with respect to n for 

all values of e and n . 

The only way these derivatives can be identical is for each 

to be equal to the same constant indexed by j = 2 . When we set 

each derivative equal to this constant, say (1) 2  , we have two 

differential equations, 

ah 2 (e) 	 3k2 	(0 
— (1) 2 	 and 	 — (I) 2 • 	(17) 

a8 	 an 

The solutions to these equations are 

h 2  (e) = w 2+4 2 0 

and and 

k 2 (n) =+ 	n  2 	2 
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in which the constants w 2  and X 2  are not distinguishable and 

can be combined into one constant K
2' 

This gives (15) the form 

g2[1( 1 (134-n)] = K 2+1'2 ("-n)  (18) 

When we repeat these steps for any category j we find that 

the function k
1 
 (e+n) reappears each time and that for the 

general category Xj we have 

	

gj1
(e+n)] = K.+4).

J
(e+n) 	j=1,2,..,m. 

(19) 

The last step is to restore the original parameters 8 and 

6 by means of (9) so that 

P [u(e, , ,S)] 
	  = exp 	. 	c ( 	( a)I] 
P [11(S,6)] 	 J 	j 

(20) 

The functions c and * of object and agent parameters 

enter additively into the rating scale model. These object and 

agent parameters may be transformed in any way we wish as long as 

the transformations enter additively. For psychometric applica-

tions where the agent is a rating scale item, the item's charac-

teristic might be labeled "affective value"--the item's tendency 

to attract responses into categories towards the "more" end of 

the ordered response set. Semantic problems are unlikely to 

arise, however, if we continue to use the term "item difficulty" 
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and replace c(s) 	by $ and *(6) by -6  , producing 

P(X E X i )  
eXp[K, -4.(a-6)] 

	

P(X E X°) 	 3 	3 	 (21) 

as the form of (6) necessary for objectivity. 

By shifting the denominator in (21) to the right, summing 

over j and setting the sum of all category probabilities to 

1 , we produce an expression for the probability of the observa-

tion being in the first category, 

	

o 	exp [K 0+4) 0 (B - 6)] 

	

P(X c X ) - 	
• 

exp[Kk+cl)k(6-0] 	 (22) 

In general we have 

exp[K.+(6 - 6)] 
P(X c )0 	

(f). 
) - 	3 	, 	j=0,1,..,m, m 

exp K k-4 k (B-d)] 	 (23) 

Since this model must describe the framework for any m , it 

must do so for the case of m = 1 , the dichotomous model. This 

shows that the values of K 0  , Km  and * 0  can be zero. But it 

does not tell us their values when m is greater than 1 . Thus 
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when m = 2 , we can set K
0 
 = K

2 
 = 

0 = 0 but we need values 

for 	K 1 ' 	ci) 1  and 	0 2 ' 

Scoring Functions  

A rating scale model was derived from the requirement of 

objectivity. In the process we had to introduce two characteris-

tics K and $ . Since K and 0 do not describe objects or 

agents, how they relate to objectivity is not obvious. To clar-

ify this we will investigate what happens to K and (i) when we 

estimate 6 . 

We commence by replacing the observation X by a vector 

(anij ) 	which uses the label 1 to indicate when object n's 

interaction with agent i is in category j , and 0 otherwise. 

The interaction of one object with one agent becomes a string of 

indicators, the observation vector (a ra  . j  , ) 	in which all entries 

except one are zero. 	The exception has the indicator 1 in 

position j . The model is 

P[(a nij )] = exp[..[K.+0 .0 -(5 .)]] /Y nip 	3 	3 n 	 ni j=o 	 (24) 

where 	(i) (anij ) is the vector of zeroes and a one, and 

(ii) y
ni 

is the sum of the m + 1 numerators. 

Estimation of the d's commences by forming the probability 

of a set of observations when any object is exposed to L 
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agents, 

m 
L -exp Ea ..[K.+0.03 - (5.)] 

ni3 	3 	3 	n 1 
P [( (a . ))1 = TT 	j=15 nij 

i=1- 	 Yni 

(25) 

m 	 L m 	 L 
= exp ET (K.+0 0 )-E (Ea 	4 ) 6 / Tr y . 

[ j=0 nj 3 3 n i=1 j=0 ni3 3 	
i i=1 ni 

where 	(i) Tnj is the number of times the interaction 

between object n and the L agents fell in 

category j , 

(ii) Kj appears at a linear term separate from 

13
n 

and 	6 i ' 
(iii)ornatipliesTroin the expression 

i 
involving f311 , and , 

(iv) the coefficient of 6i is a product of the 

indicator anij and 4 j . 

The objective estimation of the d's requires the identifi-

cation of a statistic which conditions out parameters such as 

0 and unknown characteristics such as K and 0 . The way to 

accomplish this is to find such a statistic, derive its probabil-

ity distribution, and form the conditional distribution of the 
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data given the statistic. This is done by dividing the uncondi-

tional distribution of the data (25) by the distribution of the 

statistic. 

The way data bear on K and 0 in (25) through their mul-

tiplication by the category counts T nj suggests that the vector 

of category counts (Tnj)  is the statistic necessary to condi-

tion out K and a . To get the distribution of this vector 

(Tnj ) we sum the probability (25) over all ways in which 

observations ((anij  )) could add up to this set of (Tnj ). This 

summation is 

(T
j

) 

P [(T
nj

)] = 	 P  [((anij )) ] 
((a nij ))  

(26) 

(T
nj

)  L m 
exp 	Tn 	

+0 a n ) ) exp - 1: ( E a ni3  .) 	/ Tr y ni . j 	j 	j 
((a nij

)) 	j=0 	 i=1 j=0 	 i=1-  

The numerator of (26) is expressed as a product of two parts. In 

the second part, the data a nij  remain uncombined. But in the 

first part the data are combined into the Tnj  . Because (Tnj ) 

does not change within summations over data which satisfy 

(Tnj
) , the first part is a constant and can be 'moved outside 

that summation. 
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The final step in deriving the conditional distribution is 

to form the ratio of the distributions, (25) and (26) . In 

this ratio the expressions 

exp[ 	T .0c.+4).
3
8 n  )1 and 7r Yni  p it0  n3  

i=1 

appearing in numerator and denominator cancel, so that the 

remaining conditional distribution is a function of. an . ,ij 
cp,and(S.only. 

] 

The 4's are the final obstacle to objectivity. No further 

conditioning can remove them. The way to discover their struc-

ture is to analyze the manner in which (P j  combines with. Trij  

in (2E) and (26) to form the object score, 

Rn = 	cp.T n . . 	 (27)  j=0 

We can see what this scoring tells us about the 4's 	if we 

review what the ordering of categories implies about the rela-

tionship between data and the measures derived from them. 

The initiating definition of any variable implies a contin-

uum from "less" to "more." Variables are operationalized to 

obtain evidence of this continuum by labeling their categories in 

such a way that the labels establish the intended direction of 

"more." This produces monotonicity between the intended 
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direction of the variable, the hierarchy of category labels and 

measures on the variable. Just as "right" answers are defined as 

smarter than "wrong" answers, observations in higher categories 

are defined to indicate "more" of the variable than those in 

lower categories. 

Since Rn is the score from which the measure will be 

inferred, we can learn about the 4's by considering scores 

differing by a one-category improvement, say from category p up 

to category p + 1 as in 

Rn = ..-4 p
T
np

-4
p+1

Tn,p+1 4-.. 

Rn = ..+0 p [T np -1 ] ±cp
p+1 [

T
n ,p+1

+11+. . 	. 	 (28) 

Because this is an improvement, it follows that 

t 
Rn' > Rn 	or 	(Rn 

- Rn ) > 0 . 

But by taking the difference between R I.: and Rn 	in (28) we 

have 

Rn  -Rn  = cl) p+1
-0

p 
> 0 



- 20 - 

This shows the O's must have the same order as the category 

labels, i.e., 

(I) 	< (1) 	< 	• • < 0 	1 	 m 	. 
(29) 

Now consider a third R" formed by any other one-category 

improvement over Rn , say from category q up to category 

1 
q + 1 . Differences Rn - Rn and Rn - Rn are one-category 

improvements from the same Rn . Unidimensionality requires that 

one-category improvements increase scores in such a way that no 

possible scores are skipped. Objectivity requires that the 

effect on a measure of any one-category improvement from Rn 

(whether to R' or to R" ) be independent of which agents or 

categories are involved. This ineans that Rr'l - Rn and 	R;.; - Rn 

must be equal. Thus 

p+1p = q+1 	
, all p,a . 

(30) 

Since this difference is independent of which categories are 

involved, it must be a constant, 

-4) 	= C . p+1 p 	 (31) 
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If we set + 0  equal to zero (as we do when m = 1 ), the 

succeeding 0's may be written 

	

0 1  = C , 0 2  = 2C , 	, Om  = mC , 	 (32) 

This shows that C is an arbitrary scaling unit which may as 

well be 1 . 

Thus the particular scoring function necessary for objec-

tivity, in its simplest form, is 

0 	= j 	, 	j=0,1,..,m 	. 	 (33) 

The necessary model becomes 

P(X e .20) = cx14 1c. -1- i( a - 6 I  /Y 3 	 ni • (34) 

The score 

Rn=jTn . 
=0 	3  

• 

produced by the O's is just the count of the number of 

categories surpassed by (i.e., below) each observation. This 

counting stems from the ordering of the categories determined by 

the definition of the variable. 
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Category Structure and Multidimensionality  

The remaining unknowns in the rating scale model for objec-

tive comparisons of objects and agents in one dimension are the 

K'S . The absence of object or agent subscripts suggests that 

the K I S are structural parameters (Andrich 1978a, 1985). How-

ever, the probability of the interaction of one object with one 

agent 

pka rlij )] = exp Ea
nij 

[K.+J(a n -(5 i )j /y ni ' j=o 

shows that the K's do not multiply objects or agents like the 

4's . Instead they are additive like object and agent parame-

ters. Since the object and agent parameters on the one dimension 

of the rating scale model are exhausted by a and 6 , the K's 

must either be category descriptors or represent the object and 

agent parameters of a model with more than one dimension. 

In frameworks of m + 1 categories there are m possible 

dimensions and the dimensionality of objects and agents must be 

identical (Douglas and Wright 1986). This means that when we 

want two parameters to characterize any object, we must have two 

for each agent which interacts with that object and, also, obser-

vations in at least three categories. 

When we apply these conditions to the rating scale model 

with m categories but only one dimension, we see that m - 1 
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additional dimensions corresponding to m - 1 different arrange-

ments of the m + 1 category labels could also be modeled. 

Rasch (1968) proves that the multidimensional model necessary for 

objectivity can be written 

m 
P 
 [
(a ..)] = exp E a .. (e . - 6..) /Y ni , 

nij 	 ni3 nj 	13 
j=0 (35) 

where 	(i) anii  is as before, 

(ii) a . is the parameter for object n on 
n3 

dimension j , 

(iii) 6.. is the parameter for agent i on 13 

dimension j , and 

(iv) a convenient choice of restrictions to bring 

m + 1 categories into m dimensions is 

is o no = 6. 	= o 10 

Apart from additional object and agent parameters, the 

difference between the rating scale model for one dimension and 

this model for m dimensions is the absence of (los and K'S . 

We can have a scoring function in (35) by introducing 0 .k j  as a 

multiplier for 

1 if k = j 
0 .0 .-6..) k j  n3 	13  

with 
0 otherwise 	. 

  

0 kj 
= 
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The result resembles that of Andrich (1985) but differs in that 

his model has less than m dimensions so that his (OP kj )) can-

not be an identity matrix. 

This brings us to the KIS and the part they play with 

respect to extra dimensions. One way to see what the K's 

represent is to separate a "first" dimension from the m dimen-

sions of the m-dimensional model. This leads to 

m 

t3 	-6 	= E (1, .03 	-6. ) nj ij 	kj nk ik k=1 

m 
= 4)

lj
(13

nl
-6

il
)± E cl) Ja 	-6. ) kJ nk ik 

k=2 

which, when we score the first dimension by 40 = j , becomes 
i 

m 

nj -6 ij = j( 	-6. )+ E cp . 	-6. ) . n1 11 	kJ nk ik 
k=2 

Since the m and unidimensional models account for data in 

the same m + 1 categories, the counterpart for the unidimen-

sional model 

K j +j(8 -6.) n I 
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shows that the K I S replace m - 1 unmodeled parameters via 

m 
K. = E 4, . (8 	-6 . ) 	j=0,1, .. ,m . 

J 	k=2 k3 nk ik 
(36) 

When we model a second dimension, the same principle of 

reduction applies leaving 

m 
K. =  

] 	

cp kj (3 nk-6 ik ) 	j=0,1,..,m . 
k=3 

 

Thus, for models of dimension less than m , there must always be 

OS to summarize the remaining dimensions potential in the 

observations but not modeled. But when step-wise extraction of 

dimensions reaches m , the explicit object and agent parameters 

exhaust the parameter structure leaving no dimensions for the 

K I S to represent. 

Another way to see this is to express the connection between 

K. and the m-dimensional model as 
J 

K
j 

= 03 nj -j f3
n
)- ( 6 	-j 6 ,) 

ii 	1 
(37) 
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in which 	(i) 0nj and 6 ij represent the dimension implied 

by a comparison of the jth category with all 

others, and 

(ii) B n  and 6 i  are the parameters of the rating 

scale model in which categories are 

scored 0,1,..,m . 

This shows how each K. summarizes the effect of the unmodeled 

dimensions on the use of the jth category. Since the K's con-

found the contributions of unmodeled object and agent parameters, 

they cannot be estimated objectively. We can expect K to K
. 

approximate invariance only in 	situations 	in 	which 

nj
- jii

n 
and d ij .-- .16.1  approximate constants over the n and 

i involved. While different samples within a given framework 

may produce objective estimates of the modeled 6 and 6 , the 

effect of unmodeled dimensions on the K 's will, in general, 

cause them to vary from sample to sample. 

Constructing Multidimensionality  

Since objects and agents may be estimated independently of 

os , it follows that any one dimension can be analyzed indepen-

dently of any other dimensions which could arise from the 

category structure. This means that the" m dimensions in m + 1 

categories can be constructed one at a time. 

We have shown that consecutive integers, related monotoni-

cally to the hierarchy of categories defining a dimension, 
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provide the scoring necessary for objectivity in that dimension. 

The hierarchy of categories comes from the particular ordering of 

category labels which implements the intended dimension. But 

this must be so for any intended dimension. Therefore the con-

struction of additional dimensions is equivalent to reordering 

categories. 

This enables the construction of multidimensional frameworks 

one dimension at a time. For each dimension we reorder the 

category labels to define the intended variable and represent 

each category ordering with successive integers of the form 

(. = k 	, 	k = 0,1,..,n 	, n4m 	. 
D 

For example, the category labels "Strongly Disagree," 

"Disagree," "Agree," and "Strongly Agree" are frequently used in 

frameworks designed to elicit one dimension of attitude. The 

Likert scoring of these four labels with the integers 1, 2, 3 

and 4 (i.e., 0, 1, 2 and 3 ) produces person and item estimates 

along a variable, "Amount of Attitude." One parameter, 
t3/11 

for 

person attitude, and one parameter, 6
il 

for item affectivity, 

suffice to describe the location of people and items on this 

dimension. 
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A second scoring function 

0 = 1 , 	1 = 0 , 4) 2 = 0 and 4, 3 
= 1 

reorders the category labels so that Strongly Disagree and 

Strongly Agree are combined to represent "More Strongly" and 

Agree and Disagree are combined to represent "Less Strongly." 

This reordering constructs a second dimension with a different 

interpretation, e.g., "Intensity of Response" (Guttman 1950; 

Andrich 1985), and with additional person parameter 8 
n2 and 

additional item parameter 6
i2 

to locate people and items on 

this second dimension. 

Objectivity of measurement requires that the interpretation 

of any one dimension be free of all aspects of other potential 

dimensions. This means that equivalent estimates 

(A nl' A n2 	 (a ) 	for any person and 	o i2 ) 	for any item 

must result whether we analyze Intensity first and then Amount, 

or vice versa. 

Estimation  

When we used the ratio of (25) to (26) to derive the condi-

tional distribution necessary for the objective estimation of 

item parameters, we found that the m statistics T nj 	removed 

the 	a's and K I S from the model. The m agent count statis- 

tics S ij provide a similar conditional distribution for the 

objective estimation of object parameters. This means that the 
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K's need play no part in parameter estimation. 	On the other 

hand, routine application of a conditional estimation algorithm 

is not always the most efficient estimation method (Wright and 

Douglas 1977). Unconditional procedures (Wright and Masters 

1982) for parameter estimation in the rating scale model, how-

ever, necessitate the calculation of K's along with the esti-

mates of and 6. 

The unconditional likelihood of a set of data when m = 1 

is 

N L 

P[(((a j )))] = exp ET K.+ER 	-ES.6. / Tr Tr y 

	

ni 	 j=0 	n=1 
nn  i=1 	n=11=1 ni 

(38) 

This shows that the set ( T ) is sufficient for ( K. ). But 

(i) E T. = NL 	 , i.e., the sum of the T's is 
j=e)  
equal to the total number of interactions between N 

objects and L agents, and 

(ii) EjT.= E R =ES. , i.e., the sum of the category 
j=0 	n=1 n  i=1 1  
scores is equal to the sum of the object scores and to 

the sum of the agent scores. 

Thus two restrictions are necessary to calculate a set of 	K's . 
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Convenient restrictions which maintain consistency with the two 

category ( m = 1 ) model are Ko = Km = 0 . 

Summary and Conclusions  

This paper applies the principle of objectivity in scien-

tific comparisons to unidimensional measurement models for data 

collected from a set of more than two categories. Objectivity in 

a model means that the magnitude of a measure estimated from that 

model is not affected in any important way by aspects of the 

framework other than the object itself. The model makes the 

measure independent of which agents are used to produce it, of 

what other objects may or may not have been measured and of any 

other elements of the framework necessary to effect the interac-

tion hetween object and agent. 

The requirement of objectivity as necessary for measurement 

leads to proofs identifying models with this property. Douglas 

and Wright (1986) review and extend these proofs when there are 

two categories. Rasch (1968) outlines a proof deriving the model 

necessary for objectivity for observations in m + 1 categories 

when m dimensions are modeled. In this paper we derive the 

necessary unidimensional model for observatons in m + 1 

categories. 

The necessary rating scale model has one and only one pair 

of object and agent parameters which describes objects and agents 
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on a single common dimension. The log-odds of increasingly indi-

cative events is governed entirely by a linear function of these 

object and agent parameters. This linear function is multiplied 

by a "scoring" coefficient the values of which must be known 

before objectivity can be obtained. A proof based on objectivity 

shows that the numerical values of this coefficient must be 

equivalent to the integers 0,1,..,m . Andersen (1977) reaches 

the same conclusion with a proof based on the requirement of 

minimal sufficient statistics. 

The identification of the scoring coefficient necessary for 

objectivity increases our understanding of the way in which qual-

itative observations can be converted into objective measures. 

Category scoring is always equivalent to counting steps taken 

upward through an ordered sequence of increasingly indicative 

events (Wright and Masters 1982). 

The rating scale model necessary for objectivity also con-

tains a set of category descriptors. Andrich (1978a, 1985) 

interprets these characteristics as category thresholds and 

discusses their relationship to Guttman's (1950) components of a 

scale. We derive an interpretation of these characteristics from 

Rasch's 1968 multidimensional model. When less than the maximum 

number of dimensions is modeled, the category characteristics 

summarize the unmodeled object and agent parameters. As more 

dimensions are modeled, the category characteristics represent 

less and less object and agent variation until, when m dimen-

sions are modeled, no category characteristics are required. 
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Since the definition of a variable always depends on an ord-

ering of category labels, the m dimensions observed in m + 1 

categories can be accessed one dimension at a time by reordering 

categories. The scoring of each variable is implemented by 

applying the integers 0,1,..,n m to the particular order of 

categories which defines that particular variable. 

The significance of these Rasch models goes beyond 

psychometrics. They have been used to solve problems in sociol-

ogy, anthropology, political science, archeology, ecology, crimi-

nology, civil engineering and biology. They are the only models 

which fulfill Thurstone's requirement for a unit-preserving pro-

cess (1931, 257) which is sample-free (1928, 416) and, stochasti-

cally, Guttman's (1944) requirement that the response pattern be 

recoverable from the measure. Their mathematical structure pro-

duces the "additive conjoint" (Luce and Tukey 1964) and hence 

"fundamental" (Norman Campbell 1920) measurement which is the 

sine qua non of physical science. The objectivity which their 

structure makes possible is at the core of scientific inference 

and a basic premise in the theory of knowledge. 
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